

EOS AM-1 Mission Operations Review

FOT INSTRUMENT OPERATIONS PLANS

NELSON V. PINGITORE
Lockheed Martin Space Mission Systems

Goddard Space Flight Center/Code 505 Greenbelt, MD 20771 USA E-mail: nping@eos.hitc.com

FOT Instrument Operations Plans

Topics to be Addressed

- Instrument OICDs
- Roles and responsibilities of IOTs and FOT
- Operations agreements

10034213W

PINGITORE2-

Operations Interface Control Documents

- OICDs between the IOTs and the FOT being developed
- Interactions between FOT and IOTs documented in OICDs
- OICDs shall document
 - Procedures for planning and scheduling of instrument activities
 - Planning product availability
 - Processes for submitting microprocessor loads
 - Constraints
 - Real-time interaction and commanding
 - Responses to limit violations and alarms
 - PDB population and prelaunch configuration item (CI) definitions
 - Contingency interactions (e.g., safehold recovery)
 - Instrument-unique operations agreements

FOT Scheduling Roles and Responsibilities

- Focal point for all mission operations-related activities
- Coordinate overall mission schedule
- Notify Project Scientist of unresolved instrument conflicts
- Create planning products
- Notify instrument teams of updated planning products

IOT Scheduling Roles and Responsibilities

- Define activities required to perform instrument operations within constraints of system design and spacecraft requirements
- Define constraints and modes associated with activities
- Schedule detailed plan for each operations day via IST
 - IOTs must schedule their initial activities no later than 14 days prior to operations week
 - All schedule modifications by IOTs must be complete no later than 2 days prior to scheduled load uplink time
 - ASTER has a unique scheduling timeline
- Resolve all instrument-unique constraint violations
- Participate in resolution of all conflicts between scheduled activities and those of another instrument

ASTER Scheduling Timeline

IOT Real-Time Roles and Responsibilities

- No requirement to support routine real-time operations
- Define and verify command procedures nominal and contingency
- Support real time via IST for
 - Planned instrument commanding
 - Contingency commanding
 - Contingency analysis
 - Verification of instrument status and operations
 - Maneuver configuration

ASTER IOT Real-Time Roles and Responsibilities

- Support all real-time contacts
- Define and verify command procedures nominal and contingency
- Identify instrument anomalies
- Coordinate contingency commanding with FOT
- Execute contingency analysis
- Verify instrument status and operations

IOT Analysis Roles and Responsibilities

- Verify instrument status and operations
- Analyze instrument component
 - Short-term performance
 - Long-term trends
 - Statistical evaluation of trend data
- Investigate anomalies
- Update PDB items related to instrument performance
 - Telemetry calcurve
 - Telemetry limits
- Provide instrument sustaining engineering and maintenance for life of the instrument

FOT Instrument Operations

MISR

Instrument operates continuously

- Science Mode
- Global Mode
- Local Configuration (as req)
- Engineering Configuration (dark side)
- Calibration Configuration
 Over poles (~13 min each once per month)

On dark side (~3 min

once per month)

Command Requirements

- Instrument Computer
 - Memory load after power ON
- SC(
 - Stored command used to execute activities within 1 day window
 - TMONs (3)

MOPITT

Instrument operates continuously

- Science Mode (day & night)
- Calibration
- Short Calibration with normal scan
- Long Calibration (once/month)

Command Requirements

- Instrument Computer
 - loads as required
- SCC
 - Minimal stored command usage
 - TMONs (6)

ASTER (VNIR, SWIR, TIR) operates limited time (day & night)

- V/S/T Observation Mode
 - preparation (~6.5 min)
 - observation (2 16 min)
 - stereo (1 min)
- standby (40 sec)
- Other Science Modes (e.g.)
- TIR (<21 min, night)
- divided V/S/T (<19.5 min)
- divided S/T (<25 min)
- VNIR complete stereo (<18 min)
- Pointing Mode for VNIR & SWIR (part of obsv mode for TIR)
- Calibration Mode
- every 17 days VNIR & SWIR (daytime)
- every 17 days TIR long cal (nighttime)
- TIR cal before and after each obsv Command Requirements

• SCC

 Activity, instrument operations & control CMDs/sequences all stored in SCC

Loaded once per day

- Estimated SCC commands 1800 ATC

28 RTCS

- TMONs (7)

CERES

Both Instruments operate continuously

- Cross track operating mode
- continuous scan day & night
- periodic (~2 weeks) calibration
- BiAxial operation
- continuous scan, interupted twice per orbit with sun-avoidance "short scan"
- periodic (~2 weeks) calibration

Command Requirements

- Instrument Computer
- loads as required
- SCC
 - Short scan start/stop commands (loaded once per day)
 - TMONs (15)

MODIS

Instrument operates continuously

- Science Mode
- All Bands during day (50% of orbit) Bands 20 - 36 during night (50% of orbit)
- Calibration
- 17 internal cal activities as req using 3 targets and electronics changes (BB, SRCA, SD, ECAL)

Command Requirements

- Instrument Computer
 - loads as required
- SCC
 - Daily command load
 - TMONs (1)(TBR)

10034213W PINGITORE2- **10**